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ABSTRACT

Bandpass Laplacian-like operators derived by a hierarchi-
cal discrete correlation technique provide natural measures
of texture coarseness. The performance of these measures on
a standard set of geological terrain types is comparable to
that of conventional texture features that do not use direc-
tional information.
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1. Introduction

In texture segmentation it is appropriate to process the

image with operators of many sizes. This is computationally

expensive because many computational steps are required for

each location in the image.

In [1], Burt describes an elegant hierarchical discrete

correlation (HDC) method for computing the correlation between

an image and A kernel. In this approach correlations at upper

levels can be computed as the weighted sums of correlations

with narrower kernels at lower levels. Kernels which can be

computed hierarchically in this way closely approximate the

Gaussian probability distribution. This means that correla-

tion is equivalent to low-pass filtering.

The principal advantage of the HDC method is that it is

computationally more efficient than the direct correlation

and FFT methods. In addition, correlations for a set of

scaled kernels are computed at once, without any need to

construct and store large kernels or kernels of different

shapes and sizes. Samples of the correlations obtained at

nearby image positions can be summed to obtain e.g. band-pass

Laplacian ("Mexican hat") operators. Mexican hat filtered

images are essentially the same as the differences of

Gaussian filtered channels observed in the human visual

system [2].

Band-pass filtering responds to details of the image which

contain a limited range of spatial frequencies. This reflects

the coarseness of the texture. Thus, features derived from



band-pass filtered images on different frequency bands

might be useful for texture classification. The local

computation of these textural properties could be an aid

to image segmentation using cooperative hierarchical com-

putation [3]. b

In this note we apply Mexican hat filtering to 180

LANDSAT imagery samples belonging to three geological

terrain types. The averages of the squared outputs computed

over band-pass filtered images are used as texture features

in a Fisher linear discriminant classification. The results

are compared to the results obtained by Weszka et al. [4].

Nondirectional Mexican hat features did not yield as

good classification results as some of the statistical tex-

ture features using directional information. Their performance

was more comparable to that of features derived from the

Fourier power spectrum. In any case, Mexican hat features

seem to give a good measure of texture coarseness. Combined

with other measures, they should be useful for texture segmen-

tation.
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2. Approach

2.1 Mexican hat filtering

The band-limited Laplacian ("Mexican hat") may be formally

defined as the Laplacian of a Gaussian A
2G, but the result

is generally approximated as the difference between two

Gaussian functions which have different standard deviations

[1] [2],
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Typically, the ratio 02/01 is in the range of 1.5 to 2.5.

Burt defined three types of HDC. In type 1 an odd number

and in type 2 an even number of correlations with small

kernels are summed to obtain the correlation with the next

larger kernel, while type 3 is for fractional values. He also

defined a reduced form of HDC in which the number of samples

is reduced by a factor of r2 from level to level.

Let g,(x,y) be the correlation function at hierarchical

level t. It was obtained from the original image f(x,y) through

I recursions of a correlation-like operation using the weighting

function w(x,y). The sample distance grows geometrically by

the factor r from level to level; thus r is said to be the

order of the HDC.
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A band-limited Laplacian with a ratio a2/a =r may

be obtained from the type 1 HOC of order r by subtracting

g9+l (x,y) from g,(x,y). If the reduced form of the HDC

is used, samples of g,+l(xY) are not computed for every

sample of g,(x,y). Missing samples are obtained by apply-

ing w(x,y) to the neighborhood of g,(x,y).

To obtain ratios a2/,1< r two HOC's (of any type) are

compute. ,ith different generating kernels. The Laplacian

operator is then a difference between corresponding samples

in the two HDC's.

For a2/a> r, first an HDC of any type is obtained

to form the central Gaussian. Then the surround Gaussian

is obtained by applying the generating kernel in reverse.

For type 1 we have

m m
Lx ny' =n'y' - ai=-m j=-m wijgx-in-_+

r r

The sums in this expression are understood to include only
n -i n-i

those terms for which X and IL are integer valued. The
-I r r

equal contribution constraint on w ensures that the sum will

have a total weight of 1/r2 , hence the r2 factor normalizes

the sum in the above definition.

A one-dimensional example using this procedure is shown

in Figure 1 [1]. Here a ratio 02/01 - 2.5 is obtained with

4 a type 1 HOC, order r=2, kernel width k=5, and with a separ-

able generating kernel with weight vector w - (.05,.25,.4,.25,.0r

The Mexican hat filtering algorithm used in our study was

based on this third procedure.



2.2 Features and classifier

As a result of the hierarchical computation, we have an

order N pyramid, in which the lowest level represents the

highest spatial frequency band. Its dimensions are the same

as in the original image. Image array dimensions are de-

creased by half from level to level, and these levels repre-

sent lower frequency bands.

Let L i'j, be the value of the filtered image at point

(i,j) on level Z. Texture feature LAP is defined as an

average of the squared values computed over the filtered image:

1 2exp(N+l-i) 2exp(N+l-t)

2exp(N+l-) 2exp(N

for t=1,2,...,N. For a 64 by 64 image, for example, we have

six features. The first of these is computed over a 64 by 64

image and the last one over a 2 by 2 image.

The classifier used in this study was the same Fisher

linear discriminant classifier as in [4].
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2.3 Image data

The same imagery as in the main study of [4] was used.

It comprises a set of 180 LANDSAT terrain samples, belonging

to three geological terrain types: Mississippian limestone

and shale; Lower Pennsylvanian shale, and Pennsylvanian sand-

stone and shale (labeled A, B and C). The gray scale has

been modified to cover just 64 gray levels and histogram

flattening has been performed on each of these 180 terrain

samples to remove effects of unequal brightness and contrast.
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3. Experiments

First a pilot study was performed by using different

generating kernels in filtering. The generating kernels used

were:

wl = (.05,.25,.4,.25,.05), w2 = (.13,.37,.37,.13) and

w3 = (.2,.6,.2). Here wl and w2 are the most Gaussian-like

kernels for kernel widths 5 and 4. The w3 kernel is not

Gaussian-like, but it was used in this study because it accen-

tuates high spatial frequencies. Using these kernels first

ten terrain samples of each type were processed. The results

were quite similar for each of these kernels. It seemed that

none of these was able to discriminate very well terrain types

A and B, while each of them was able to discriminate type C.

Kernel w2 was selected for the main study because it has

smaller border effects than wl at upper pyramid levels.

In the main study all of the 180 terrain samples were

processed using kernel w2. As a result we got six feature

values for each terrain sample, each of them corresponding to

a different spatial frequency band. The distributions for some

of these features are presented in Figure 2.

The Fisher linear discriminant classification method was

used to classify the terrain samples into three classes by

using single features and pairs of features. The sixth fea-

ture was not used in classification because its values seemed

to be randomly distributed, having no correlation with the

different terrain types. Classification results for single

features are presented in Table la and for pairs of features

in Table lb.



4. Discussion and conclusions

A direct comparison to results of Weszka et al. [4] is

difficult because our features have no directional component.

In [4], the features were computed for all pixel sizes (fre-

quency bands) in four directions, and all features and feature

pair combinations were used in classification. Neither are

the frequency bands used in these studies exactly equal.

However, by computing the averages of the classification re-

sults of the earlier study for each frequency band, we can

have a rough estimate of the performance of the LAP features.

In Tables 2a and 2b are presented the averages of the classi-

fication results in [4] for the Fourier and "CONTRAST" (com-

puted on sinqle points or on averages) features. The best

classifications for each size are presented in brackets.

The following can be seen from these results:

1. Features based on Mexican hat (LAP) filtering do not

quite as well as features based on second-order statis-

tics, and do about equally well as Fourier features.

The absence of directional information reduces the

performance of the LAP features. However, their per-

formance does not degrade as rapidly with increasing

size as does that of the Fourier and statistical

features.

2. Results for terrain type C are very good. Using a

single feature only one of the type C samples was mis-

classified. This result is better than the results

of most of the experiments using feature pairs in [4j.
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3. Discrimination of terrain types A and B is quite

poor. The distributions of features at level 2

(Figure 2) show that the feature values of the

misclassified samples are quite different from the

values of the other samples belonging to the same

terrain type.

These results indicate that the LAP features give a good mea-

sure of texture coarseness, but in order to get better classi-

fication accuracy some additional measures are needed. Prob-

ably these samples are more appropriately modeled statistically

in the space domain, rather than as sums of sinusoids, and

statistical features captured the essential differences more

effectively [4]. This is also in agreement with the results

of Conners and Harlow [5].
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Misclassified

Feature Correctly A'S B'S C's
number classified

1 121 33 25 1

2 85 16 48 31

3 122 30 23 5

4 105 38 16 21

5 80 48 19 33

Table la. Results using single features

Misclassified

Feature Correctly A's B's C's

pair classified

1,2 147 15 16 2

1,3 126 27 26 1

1,4 137 21 20 2

1,5 132 24 22 2

2,3 140 17 17 6

2,4 131 20 21 8

2,5 110 18 30 22

3,4 131 25 19 5

3,5 126 28 21 5

4 4,5 107 38 15 20

Table lb. Results using pairs of features

9
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CONTRAST
CONTRAST COOC (average

Feature pair Fourier COOC (points) gray levels) LAP

Size 1, Size 1 142.8(158) 151.5(166) 151.5(166) -

Size 1, Size 2 139.3(151) 146.3(166) 143.5(158) 147

Size 1, Size 3 133.1(144) 138.6(153) 139.1(155) 126

Size 1, Size 4 128.4(137) 130.7(140) 138.6(132) 137

Size 2, Size 2 116.5(135) 141.0(154) 118.8(142) -

Size 2, Size 3 117.4(134) 132.1(148) 130.6(151) 140

Size 2, Size 4 107.1(126) 126.3(140) 129.5(146) 131

Size 3, Size 3 117.2(122) 119.5(133) 129.8(144) -

Size 3, Size 4 109.7(120) 109.6(126) 128.8(139) 131

Size 4, Size 4 98.7(109) 93.7(110) 121.5(130) -

Table 2a. Average values of classification results for pairs
of features.

CONTRAST CONTRAST
Feature Fourier (points) (averages) LAP

Size 1 124.0(133) 129.5(136) 129.5(136) 121

Size 2 95.8(108) 120.3(126) 97.0(112) 85

Size 3 100.0(111) 100.8(113) 112.8(117) 122

Size 4 87.0(95) 82.3(99) 111.8(117) 105

Table 2b. Average values of classification results for single
features.
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* Figure 1. one-dimensional "Mexican hat" operator



ILAP(1) LAP(2) LAP131

No. of times No. of times No. of times
Value obtained Value obtained Value obtained

A B C A B c A B C

75 3 54 1 20 1

80 3 56 2 22 3 6

85 3 58 1 1 24 2 7

90 6 60 6 4 26 10 15

95 10 62 10 2 2 28 12 8 1

100 9 64 11 2 1 30 15 10

105 10 66 14 7 4 32 9 5 2

110 1 7 68 1 4 5 34 4 2 2

115 2 70 10 8 2 36 3 2 2

120 3 6 72 4 2 10 38 1 2 2

125 2 4 1 74 5 10 40 2 5

130 3 3 76 1 3 4 42 1 7

135 5 4 78 7 7 44 6

140 10 2 80 7 7 46 3

145 6 7 82 3 4 48 6

150 8 7 84 1 1 50 6

155 13 6 86 1 1 52 6

160 7 11 88 54 3

165 4 6 90 2 1 56 3

170 1 4 92 1 58 3

175 1 1 60 3

180 1

Figure 2. Distributions of feature values
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